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Abstract

Introduction: Instrument failure caused by excessive
torsional stress can be controlled by creating a manual
or mechanical glide path. The ProGlider single-file
system (Dentsply Maillefer, Ballaigues, Switzerland)
was recently introduced to perform a mechanical glide
path. This study was designed to compare the effect
of a glide path performed with PathFiles (Dentsply Mail-
lefer) and ProGlider on torque, time, and pecking motion
required for ProTaper Next X1 (Dentsply Maillefer) to
reach the full working length in simulated root canals.
Methods: Forty Endo Training Blocks (Dentsply Maille-
fer) were used. Twenty were prepared with a
mechanical glide path using PathFiles 1 and 2 (the Path-
File group), and 20 were prepared with a mechanical
glide path using a ProGlider single file (the ProGlider
group). All samples were shaped with ProTaper Next
X1 driven by an endodontic motor connected to a digital
wattmeter. The required torque for root canal instru-
mentation was analyzed by evaluating the electrical
power consumption of the endodontic engine. Electric
power consumption (mW/h), elapsed time (seconds),
and number of pecking motions required to reach the
full working length with ProTaper Next X1 were calcu-
lated. Differences among groups were analyzed with
the parametric Student t test for independent data
(P < .05). Results: Elapsed time and electric power
consumption were significantly different between
groups (P = .0001 for both). ProGlider appears to
perform more efficiently than PathFiles in decreasing
electric power consumption of ProTaper Next X1 to
reach the full working length. Conclusions: This study
confirmed the ability of ProGlider to reduce stress in Pro-
Taper Next X1 during shaping through a glide path and
preliminary middle and coronal preflaring. (J Endod
2014;40:2015–2018)
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Nickel-titanium (NiTi) rotary instruments were introduced to reduce operator tired-
ness, shaping time, and the risk of procedural errors when performing root canal

shaping (1). Although several studies have shown that shaping outcomes with NiTi
rotary instruments are mostly predictable (1–3), mechanical failure is a major
concern (4, 5). The life of an NiTi rotary instrument is proportional to its
operational stress state (6–9). In clinical practice, the risk of instrument failure is
mainly determined by bending and torsional stresses (10, 11). Canal curvature is
the predominant risk factor for increased bending stresses, and this cannot be
influenced by the clinician (12–14). Torsional stresses are proportional to the
compression force applied by the operator to the handpiece (15) and the width of
the contact area between the canal walls and the instrument cutting blade (16, 17).
These significantly increase if the canal cross section is smaller than that of the
instrument noncutting tip (18, 19). Although bending stresses are significant for
cyclic fatigue, instrument failure is chiefly caused by excessive torsional stresses
(20), and the clinician can drastically reduce these by creating a smooth glide path
by either manual or mechanical preflaring (18–20). Previous studies suggest that
mechanical instrumentation with the NiTi rotary PathFile (PF; Dentsply Maillefer,
Ballaigues, Switzerland) represents an easier and less invasive method to provide an
adequate glide path (21).

The new ProGlider (PG, Dentsply Maillefer) single-file system has been recently
introduced to perform a mechanical glide path (22) (Fig. 1). Its exclusive design
and mechanical features enable the glide path to be created by a single instrument of
1 size (tip size = 0.16 mm). Additional features include a progressive taper (.02 at
tip level up to .085) with a cutting surface of 18 mm. To perform a glide path, the
PG must be used in continuous rotation (suggested settings 300 rpm with a 2–5.2
Ncm torque). Because of its progressively tapered design, the instrument also provides
a preliminary preflaring of the middle and coronal portions of the canal.

Dedicated endodontic motors for use in any rotary NiTi system must maintain a
constant rotational speed, limit torque, and keep the instrument stress state within
constant and acceptable levels (23). The handpiece is capable to withstand the lateral
pressure on the revolving instrument by increasing the torque, without decreasing its
speed and cutting efficiency (24). Thus, the engine increases torque when the instrument
undergoes an increased workload in order to keep a constant speed (23, 24). Variations
in torque result in different electrical power consumption by the endodontic engine
(25, 26). Therefore, electric power consumption can be considered a reliable
surrogate parameter to evaluate the stress state of the instrument during shaping
(15, 25, 26). The aim of this study was to evaluate the influence of a mechanical glide
path performed with rotary PFs and the PG on the electric power consumption of the
endodontic engine during root canal shaping with ProTaper Next X1 (Dentsply
Maillefer) in simulated root canals.
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Figure 1. PG NiTi rotary system. A single instrument of 1 size (016, .02) and a
progressive taper (up to .085) with an active part of 18 mm available in 3
different lengths: 21, 25, and 31 mm.
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Materials and Methods
Forty standardized ISO 015 (apical), .02 taper, 40� curvature,

16-mm working length (WL) Endo Training Blocks (Dentsply Maille-
fer) were used for this study. Sample size calculation was performed
in G*Power 3.1.4 (Kiel University, Keil, Germany) to set study power
at 80%. One expert operator, previously calibrated for pecking speed
and pressure on the handpiece, performed all the instrumentation
phases of this study. The Endo Training Block canals were scouted
up to the WL with a #10 stainless steel K-File (Dentsply Maillefer)
and randomly assigned to 1 of 2 groups:

1. The PF group (n = 20): The mechanical glide path was performed
with PF rotary instruments #1 (013, .02) and #2 (016, .02) accord-
ing to the manufacturer’s instructions before using ProTaper Next
X1 at the WL.

2. The PG group (n = 20): The mechanical glide path was performed
with PG rotary single files (016, .02 at tip level, with progressive ta-
per up to .085) before using ProTaper Next X1 at WL.

The mechanical glide path was performed using Glyde (Dentsply
Maillefer) as a lubricating agent and an endodontic engine (X-Smart,
Dentsply Maillefer) with a 16:1 contra-angle at the suggested setting
(300 rpm on display, 5 Ncm). New instruments were used for each
Endo Training Block.

Prepared specimens from both groups were shaped with a new
ProTaper Next X1 rotary file (017, .04) at the WL. The endodontic
motor used for shaping was the Tecnika digital motor (ATR, Muggi�o,
Italy) with a 16:1 reduction handpiece. In all cases, the speed of rotation
was set to 300 rpm and the torque to 5.2 Ncm. The endodontic motor
was connected to a digital wattmeter (WT 20130 Digital Power Meter;
Yokogawa, Tokyo, Japan) and an electronic schedule in order to eval-
uate the electric power consumption required to reach the full WL. The
electronic schedule was designed to quantify and subtract the electrical
andmechanical power disturbances. The electrical power consumption
(mW/h), number of pecking motions, and time (s) required to reach
the full WL with a ProTaper Next X1 was calculated for every specimen
belonging to the 2 groups (PF and PG). The Kolmogorov-Smirnov test
for normality revealed a normal data distribution, and differences
between groups were analyzed using the parametric Student t test for
independent data. Differences were considered statistically significant
when P was <.05. All statistical analyses were performed using the
SPSS for Windows 12.0 software package (SPSS, Inc, Chicago, IL).
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Results
No damage or separation of PF and PG instruments occurred dur-

ing the glide path phase. The PF system (#1 and #2) required the same
number of total passes to reach apex (n= 1 + 2, respectively) as the PG
single file (n = 3). Electrical power consumption during the shaping
operations with ProTaper Next X1 was significantly different between
the groups (P = .0001). The endodontic motor consumed
4.89 mW/h (standard deviation = .52) and 4.16 mW/h (standard
deviation = .56) in the PF and PG groups, respectively (Table 1).
The mean time required to reach the full WL with ProTaper Next X1
was also significantly different between the 2 groups (P = .0001)
(Table 1). The mean time required to complete the shaping operation
with ProTaper Next X1 in the PF group was 7.99 seconds compared with
5.91 seconds in the PG group. Pecking motion was not statistically
different between groups (Table 1). No instrument unwinding or failure
was recorded during the shaping operations with ProTaper Next X1.

Discussion
The risk of instrument failure is a concern when using NiTi rotary

instruments, particularly the potential difficulty of removing instrument
fragments and the perceived adverse prognostic effect of this procedural
complication (5, 27). Prediction of this risk is a continued source of
debate. After initial canal scouting with manual K-files to determine
the first WL and to guarantee the foraminal patency, the creation of a
glide path is mandatory to increase the shaping performances of NiTi
rotary or reciprocating instruments (17, 18, 28). Instrument life is
strictly related to the stress state, and failure may result from
incorrect or excessive use (6–9, 29). A manual or mechanical glide
path is necessary to reduce the effect of torsional stresses along the
canal and the risk of instrument failure (5, 16–18). In order to
avoid instrument failure from excessive torque, the root canal
diameter should be larger than, or at least equal to, the noncutting
tip of the first shaping instrument used. Previous studies have
reported that the mechanical glide path is more effective at
maintaining the original canal anatomy than the manual glide path
with K-Files (21, 30). Moreover, the mechanical glide path may be
less time-consuming and is associated with a lower prevalence and
severity of postoperative pain, making it particularly suitable for inexpe-
rienced clinicians (21, 31).

This study compared PF and PG systems for performing the
mechanical glide path. The electric power consumption required by
the endodontic engine during canal root shaping for the full WL with
ProTaper Next X1 was recorded in simulated root canals for both sys-
tems. ProTaper Next X1 is a new generation rotary shaping instrument
designed to perform the same coronal and middle root canal shaping
with a single file as the first 2 ProTaper Universal S1 and S2 instruments.
Consequently, it may benefit from a preflaring of the middle and coronal
portion of the root canal in order to decrease torsional stresses.
Although results obtained from resin blocks do not fully reflect those
in real teeth, where dentin is involved, the use of simulated root canals
has shown the advantages of providing standardized experimental con-
ditions as a reproducible and widely used model (3, 21, 32). Specific
endodontic engines for NiTi rotary instruments have been developed
(23, 24) to keep the same rotational speed (33, 34) by controlling
the applied torque. NiTi rotary shaping instruments with a variable
taper are designed to cut dentin in correspondence of their larger
cross sections and require a larger torque (15), mainly because of
dentin hardness, root canal anatomy, and the presence or absence of
adequate preflaring (21, 23–25, 33, 34). The torque applied to the
endodontic file driven in a continuous rotary mode is proportional to
the power consumption of the endodontic engine (26). As a
JOE — Volume 40, Number 12, December 2014



TABLE 1. Electric Power Consumption (mW/h), Time (s), and Number of
Pecking Motions Required to Reach the Full Working Length with ProTaper
Next X1 in Simulated Root Canals after Glide Path by PathFile (PF) or ProGlider
(PG)

Measure PF group (n = 20) PG group (n = 20)

Electric power consumption (mW/h)
Mean 4.88 4.15
SD 0.51 0.56
SEM 0.11 0.12
Lower 95% CI 4.64 3.89
Upper 95% CI 5.13 4.41

Pecking motions (n)
Median 4 4

Time (seconds)
Mean 7.99 5.91
SD 1.73 1.28
SEM 0.38 0.28
Lower 95% CI 7.18 5.30
Upper 95% CI 8.80 6.51

CI, confidence interval; SD, standard deviation; SEM, standard error of mean.
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consequence, power consumption is a representative parameter of the
instrument life (15, 25, 26) if instrument failure caused by excessive
torque is avoided.

The resin block glide path in the PF group was performedmechan-
ically with PFs 1 and 2 before shaping with ProTaper Next X1 according
to the manufacturer’s instructions. In the PG group, the PG system was
used, which is a single instrument made of M-Wire NiTi alloy with a pro-
gressive taper and a square cross section characterized by a semiactive
tip in order to ensure superelasticity properties and a cutting surface of
18 mm (Fig. 1). As well as creating the glide path, the PG system may
also create preliminary root canal middle and coronal preflaring
because of its progressive taper (.02 up to .085), potentially decreasing
shear stresses for every type of NiTi rotary shaping instrument. Prelim-
inary preflaring by the PG system thereby reduces the NiTi instrument
work during shaping. Preflaring is the preliminary enlargement of the
root canal, usually in the coronal and middle portions, which has pre-
viously required the use of curved instruments to reach the full WL (1,
17). The glide path creates a smooth canal tunnel, usually with a small
taper (.02), to prevent instrument blockage or taper lock (18–21).
Because the tip size of PG is 0.16 mm, the instrument is
recommended for ProTaper Next X1 (tip size = 0.17 mm) and may
be suitable for any subsequent NiTi rotary shaping instrument with a
similar tip size.

The present study suggests that, because of its progressive taper,
the NiTi rotary PG achieves a greater preflaring of the coronal and mid-
dle portions of the root canal compared with PFs 1 and 2. This results in
decreased electric consumption and stress state supported by ProTaper
X1 during shaping. In addition, the time required to reach the full WL
with ProTaper Next X1 was statistically lower in the PG group compared
with the PF group. However, the required number of pecking motions
did not differ between groups. No difference in the total number of
passes was noted between PF and PG during glide path creation. How-
ever, it is expected that PG may require higher energy consumption
because of its greater tapered design. The greater stress that PG could
encounter during operation should be compensated by its high-
performing M-Wire alloy. Moreover, several studies have shown that
root canal preflaring might allow WL files to more consistently reach
the apical foramen, significantly increasing the precision of electronic
apex locators to determine the real WL (35).

In conclusion, our results confirm the capability of PG to perform
a glide path as well as middle and coronal preflaring, reducing the
amount of stress stored by ProTaper Next X1 during shaping. Further
JOE — Volume 40, Number 12, December 2014
research is required to find a valid and quantitative indicator of instru-
ment life that can register and record the stress stored by each instru-
ment during shaping, thereby indicating the appropriate moment to
discard it in clinical practice.
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